
Ben Teo: Thesis Research

Context: Phylogenetics studies the evolutionary relationships among a set of species. Methods are devel-
oped to reconstruct their genealogy (phylogeny) from a common ancestor, and to fit evolutionary models
that explain their observed traits in light of this shared history. The phylogeny is represented as a directed
acyclic graph (DAG), whose nodes represent either present-day or ancestral species, and whose edges indicate
descent. The phylogeny can be a tree, where each node other than the root (the common ancestor of all
nodes in the graph) has one parent node, or more generally a network, where some nodes (generally called
‘reticulate’ or ‘hybrid’ nodes) have multiple parents to represent hybridization, migration and subsequent
gene flow between populations, recombination between virus strains, etc. Traits can be discrete or continu-
ous (e.g. DNA sequences, flower color, body size, gene expression level, strain virulence) and are modeled as
evolving from the root state down the phylogeny according to some stochastic process (e.g. Brownian mo-
tion, Ornstein-Uhlenbeck process). Models that accurately capture their evolution are important both for
reconstructing ancestral states and predicting potential trait trajectories, and should be evaluated on larger,
more realistic phylogenies, that often contain many reticulations. Yet existing methods to fit such models
do not scale well as the phylogeny grows in size (number of nodes) and complexity (number of hybrid nodes).

Research focus: Statistical and computational techniques to efficiently infer the parameters of models for
the evolution of continuous traits on large, complex phylogenetic networks.

• Previous work (Section 1): Extended existing continuous trait models for phylogenetic networks
to account for intraspecific (within-species) variation.

• Current work (Section 2-3): (1) Reframe inference for continuous trait models in terms of belief
propagation (BP) and loopy belief propagation (loopy BP) from the Graphical Models literature. (2)
Build a Julia package to fit Gaussian trait models on phylogenetic networks using BP and loopy BP.

• Proposed work (Section 4): Specialize BP and loopy BP to fit Gaussian trait models on phyloge-
netic networks using exact and approximate likelihood gradient computations.

Impact: Methods that scale well with the complexity of the phylogeny will address a critical bottleneck in
the current confluence of (1) advances in methods to reconstruct complex phylogenies [27, 14] and (2) the
growing potential for large-scale comparative studies in the literature [11, 26]. Further, efforts to develop
these methods complement recent efforts to adapt dimension-reduction techniques (e.g. latent factor models,
structural equation models) to high-dimensional continuous trait models on phylogenetic trees [7, 25]. The
integration of both these components (methods that manage network complexity and trait dimension) will
significantly advance model selection for the evolution of continuous traits.

1 Intraspecific variation for Gaussian trait models on a network

Context: Regression methods have been adapted to test hypotheses on trait evolution by modeling a re-
sponse trait as a linear function of predictor traits among a set of species, and residual variation by an
evolutionary model on their phylogeny to capture correlated deviations. The trait values for each species
are typically sample aggregates that are influenced by intraspecific variation. Failing to account for such
variation adversely affects parameter estimation and model selection for these methods on phylogenetic trees
[20, 3]. However, its impact given a phylogenetic network had not been documented. In fact, there was
no available regression method implementation for phylogenetic networks that could model the variable ef-
fects of intraspecific variation for different species (e.g. some species can be less densely sampled than others).

Approach: We extended existing regression methods that account for intraspecific variation in the response
trait along a tree, to networks [24]. Our method assumes equal intraspecific variation in the response trait
across species, and jointly estimates the regression coefficients for predictor traits with interspecific and
intraspecific variation in the response trait. It is now implemented in the PhyloNetworks Julia package
[21]. We proved that the computational complexity of our method scales with the number of species instead
of the number of individuals, so that either individual-level or species-level data can be supplied. We ran
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simulations to demonstrate our method’s accuracy and its robustness to assumption violations, and applied
it to study leaflet size evolution in Polemonium, whose history was shown to involve hybridization [19].

2 Exact and approximate methods to fit trait models

Context: Trait evolution is typically modeled by a Markov process that evolves down the phylogeny and
induces a joint distribution over its nodes. The joint distribution can be expressed as a product of factors,
one over each node family (a child node and its parent(s)). For example, the joint distribution over a tree
can be written as a product of edge factors. To fit trait models, we often need to compute the data likelihood
by evaluating the joint distribution at the trait values observed at the tips (leaves) and marginalizing out
unobserved node states. Several pruning algorithms have been invented to efficiently compute this quantity
in a postorder traversal (of branches, hence the term “pruning”) of a tree [4, 8, 16]. These algorithms essen-
tially rewrite the multiple integral as a nested sequence of smaller integrals. Unfortunately, pruning cannot
be applied to networks, and alternative algorithms to efficiently compute the data likelihood on a network
are lacking. For example, current implementations that fit Gaussian trait models on a network build the
covariance matrix for all nodes and invert a submatrix for the tip nodes each time the data likelihood is
evaluated for different parameter values [1]. This becomes increasingly intractable as the network size grows.

Approach: Algorithms to efficiently marginalize a joint distribution that factors over a directed acylic graph
(DAG) have been extensively studied in the Graphical Models literature. A graph data structure called a
clique tree (also known as tree decomposition, join tree, junction tree) can be constructed from the phylogeny
and trait model, and the data likelihood can be computed in a postorder traversal of the clique tree under
a message-passing scheme called belief propagation (BP) [12].

We cast the various pruning algorithms as specialized instances of BP, and demonstrate the usefulness of
this framework for fitting complex evolutionary models that induce a more complex graph representation than
the original phylogeny. For example, models that account for incomplete lineage sorting (loosely speaking,
a specific mechanism by which the observed traits and trait model can appear discordant with an accurate
phylogeny) cannot be described by a Markov process for the trait value on the original phylogeny [18], but
may be reformulated as a Markov process over a larger state space on a larger DAG that contains the original
phylogeny. BP can be run on a clique tree for this larger DAG (typically a network) to compute the data
likelihood. Our goal is to alert or remind the phylogenetics community of the versatility and applicability
of these tools to phylogenetic networks, so that efforts can be directed towards adapting or extending them
instead of reinventing the wheel.

While BP computes the exact likelihood, loopy belief propagation (loopy BP), which applies the same
message-passing scheme on a different graph data structure called a cluster graph, approximates the like-
lihood but scales better with the complexity of the phylogeny [12]. Structural features of the phylogeny
are informative about the computational gains of loopy BP over BP, and a survey of real and simulated
phylogenies with attention to these features suggests that these gains will grow as phylogenies grow in com-
plexity and comparative studies grow in scale. Thus, we assert the importance of investigating loopy BP
in the phylogenetics context. To start, we highlight and propose solutions to pertinent initialization details
(e.g. initial messages, message schedule) that are unique to Gaussian trait models on phylogenetic networks.

3 PhyloGaussianBeliefProp.jl: Fit Gaussian trait models on phy-
logenetic networks using Belief Propagation

Context: Biologists who work with continuous trait data over huge sets of species will need implementa-
tions of more scalable approaches to fit Gaussian trait models on these datasets, using a phylogenetic network.

Approach: We build a Julia package to fit Gaussian trait models on a phylogenetic tree or network using BP
or loopy BP. The package allows for various branch length transformations (e.g. Pagel’s λ or δ, early-burst,
accelerating-decelerating [6]) on the phylogeny, and parameter changes across the phylogeny (e.g. added
shifts in trait value at hybrid nodes [1]) to improve model fit. Parameter optimization proceeds via either
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likelihood maximization using BP or factored-energy minimization using loopy BP. As a byproduct of the
message-passing framework, ancestral states are simultaneously and efficiently reconstructed. For loopy BP,
we implement several cluster graph options (e.g. factor graph, layered trees running intersection property,
join-graph structuring) for handling phylogenetic networks of varying complexity [15, 22]. We build in Julia
to capitalize on its rich scientific computing ecosystem, especially for future extensions (e.g. Turing for
Bayesian analysis [5]), which is a strength that current standalone approaches (e.g. BEAST [23]) do not share.

I intend to present Sections 2-3 at the Evolution 2024 conference to publicize these methods to biologists
and establish potential methodological and empirical collaborations.

4 Gradient propagation and cluster graphs for phylogenetics

Context: For biologists who want to do model selection for the evolution of continuous traits on large,
complex phylogenetic networks, BP and loopy BP provide a means to manage computational costs at the
exploratory phase (Section 2). Parameter optimization and model selection can be made even more efficient if
the gradient (with respect to the model parameters) of the data likelihood can be computed, especially in the
Bayesian setting where more efficient schemes to sample from the posterior distribution (e.g. Hamiltonian
Monte Carlo) require such gradients [17]. Conveniently, BP can be adapted to compute the likelihood
gradient on a general DAG using a clique tree [12], while loopy BP can been adapted to approximate the
likelihood gradient using a cluster graph [13]. However, neither BP nor loopy BP has been specialized to
compute gradients on a phylogenetic network. Leveraging such methods to compute gradients on networks
is a natural continuation of recent work to optimize gradient computations on trees [9, 2].

The factor graph has remained the main default for general implementations due to its convenient con-
struction and initialization, and good empirical performance in most (exclusively non-phylogenetic) applica-
tions. Yet, preliminary simulations show that the factor graph generally performs poorly on more complicated
phylogenetic networks (ancestral recombination graphs) from the recent literature. An added complication is
that the approximation error and rate of convergence for loopy BP depend on the cluster graph and message
schedule used, and this dependence has been less well quantified when node states (e.g. species traits) are
multivariate and alternative cluster graphs are used.

Approach: Adapting gradient techniques to networks: I will study BP and loopy BP innovations to
compute or approximate the likelihood gradient for Gaussian models on a general DAG, and compare it
with recent developments in phylogenetics for efficient gradient computation on trees [2]. I will extend
PhyloGaussianBeliefProp (Section 3) to incorporate gradient methods, and benchmark performance dif-
ferences (e.g. accuracy, runtime, memory usage) against existing methods.

Adapting cluster graphs and message schedules to networks for loopy BP: Phylogenetic networks have
special and well-studied characteristics, which I hypothesize can be used to guide cluster graph construction.
For example, each network can be divided into components known as blocks, and cluster graphs for separate
blocks can be connected to form a cluster graph for the whole network, so that different cluster graph options
can be combined. I will conduct a thorough simulation study using PhyloGaussianBeliefProp to study
how cluster graphs and message schedules can be tailored to phylogenetic networks.

• The recent SiPhyNetwork package can simulate phylogenetic networks under realistic evolutionary
processes, with various degrees of structural complexity [10]. PhyloNetworks can then simulate trait
data on these networks using multivariate Gaussian trait models [21].

• PhyloGaussianBeliefProp (in development) can be extended to allow local (to a block) cluster graphs,
which may use different constructions, to be pieced together.

• Benchmarking the performance (over a range of evolutionary settings) of different cluster graph con-
structions against one another and a clique tree (BP) will help with developing adaptive schemes for
cluster graph construction and message scheduling, tuning heuristics to decide between BP and loopy
BP, and building intuition in efforts to prove theoretical convergence results.
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